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Abstract

Background: Type 2 diabetes may be a more heterogeneous disease than previ-

ously thought. Better understanding of pathophysiological subphenotypes could lead

to more individualized diabetes treatment. We examined the characteristics of differ-

ent phenotypes among 5813 Danish patients with new clinically diagnosed type 2

diabetes.

Methods: We first identified all patients with rare subtypes of diabetes, latent auto-

immune diabetes of adults (LADA), secondary diabetes, or glucocorticoid‐associated

diabetes. We then used the homeostatic assessment model to subphenotype all

remaining patients into insulinopenic (high insulin sensitivity and low beta cell func-

tion), classical (low insulin sensitivity and low beta cell function), or hyperinsulinemic

(low insulin sensitivity and high beta cell function) type 2 diabetes.

Results: Among 5813 patients diagnosed with incident type 2 diabetes in the com-

munity clinical setting, 0.4% had rare subtypes of diabetes, 2.8% had LADA, 0.7% had

secondary diabetes, 2.4% had glucocorticoid‐associated diabetes, and 93.7% had

WHO‐defined type 2 diabetes. In the latter group, 9.7% had insulinopenic, 63.1%

had classical, and 27.2% had hyperinsulinemic type 2 diabetes. Classical patients were

obese (median waist 105 cm), and 20.5% had cardiovascular disease (CVD) at diagno-

sis, while insulinopenic patients were fairly lean (waist 92 cm) and 17.5% had CVD

(P = 0.14 vs classical diabetes). Hyperinsulinemic patients were severely obese (waist

112 cm), and 25.5% had CVD (P < 0.0001 vs classical diabetes).

Conclusions: Patients clinically diagnosed with type 2 diabetes are a heterogeneous

group. In the future, targeted treatment based on pathophysiological characteristics

rather than the current “one size fits all” approach may improve patient prognosis.
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1 | INTRODUCTION

Type 2 diabetes mellitus now affects 5% to 10% of the adult popula-

tion in most countries, and its prevalence is rapidly increasing.1

Despite multifactorial interventions and expanding pharmacological

treatment options, type 2 diabetes patients have greatly increased

morbidity and mortality compared with individuals without

diabetes.2,3 One reason may be that type 2 diabetes is a

pathophysiologically more heterogeneous disease than previously

thought and therefore requires more individualized treatment.

WHO classifies diabetes mellitus into 4 overall categories: type 1

diabetes, type 2 diabetes, “other specific forms of diabetes”, and ges-

tational diabetes.4 We hypothesize that patients with “other specific

forms of diabetes” are frequently misclassified in everyday clinical

practice as having type 2 diabetes. These patients are thus at risk of

being treated on the basis of general type 2 diabetes treatment algo-

rithms, rather than in accordance with the specific pathophysiology

of their diabetes.5

WHO defines type 2 diabetes as a disease characterized by vary-

ing degrees of insulin resistance and insulin deficiency, in which hyper-

glycemia develops when insulin secretory capacity cannot compensate

for insulin resistance.4 Type 2 diabetes can develop at the 2 extremes

of the continuum, with patients having either beta cell failure or insulin

resistance as the principal pathophysiological defect.6 We hypothesize

that subphenotyping based on estimation of insulin secretion and

insulin sensitivity (IS) can be used to characterize this heterogeneity.

Because most glucose‐lowering agents target either IS or insulin

secretion deficiency, subphenotyping may allow more individualized

treatment with improved results.

We undertook this study to examine pathophysiological pheno-

types among Danish patients with new clinically diagnosed type 2 dia-

betes. We first assessed the extent to which type 2 diabetes was

accurately classified and then tested whether patients correctly diag-

nosed with WHO‐defined type 2 diabetes could be further

subphenotyped based on their estimated IS and insulin secretion.

We also examined the association between different type 2 diabetes

subphenotypes and important clinical characteristics present at the

time of diagnosis, such as age, gender, waist circumference, and his-

tory of cardiovascular morbidity. Our ultimate goal was to provide cli-

nicians with a rather simple clinical classification tool that could help

them make diabetes treatment choices more individualized.
2 | MATERIALS AND METHODS

2.1 | Study population and data sources

This cross‐sectional study was based on information from the “Danish

Centre for Strategic Research in Type 2 Diabetes” (DD2) study, which

has enrolled newly diagnosed type 2 diabetes patients via general

practitioners (GPs) and hospital specialist outpatient clinics throughout

Denmark since 2010. All patients aged ≥18 years with new clinically

diagnosed type 2 diabetes in Denmark after 2009 are eligible to par-

ticipate in the DD2 cohort. The patients are eligible regardless of

treatment, including insulin, as long as the caregiver perceives the
patient as having clinical type 2 diabetes. The DD2 project has

enrolled on average approximately 1250 patients per year, ie, an esti-

mated 5% of the approximately 25 000 new type 2 diabetes patients

diagnosed annually in Denmark. At inclusion, participants undergo a

detailed interview and clinical examination and provide blood and

urine samples (fasting samples obtained in 77% of patients). These

data are stored in a research database and biobank.78 We obtained

supplementary patient data through linkage with several nationwide

health databases, including the Danish National Patient Registry9

and the Danish National Health Service Prescription Registry.10

Participants eligible for our study consisted of the first 6,474

patients enrolled in the DD2 study cohort between 30 November

2010 and 29 June 2015. We excluded 660 patients with no available

measurements of glutamic acid decarboxylase antibodies (GADA)

(needed to exclude presence of type 1 diabetes with certainty) and 1

patient with type 1 diabetes. This left 5813 patients eligible for further

phenotyping into eitherWHO‐defined type 2 diabetes or other specific

forms of diabetes (see Figure 1 flowchart). At the time of enrollment,

16.1% of patients in our study cohort had not yet begun to use glu-

cose‐lowering drugs, 78.3% were taking oral glucose‐lowering agents,

and 5.7% used insulin alone or in combination with glucose‐lowering

drugs. Median time from diagnosis to enrollment was 476 days (IQR

116, 1050) in the entire population, while it was 59 days (IQR 0, 612)

in the drug‐naïve subpopulation. We used the Danish National Patient

Registry to identify the presence of cardiovascular disease (CVD),

based on hospital ICD‐10 diagnostic codes for any CVD, including

ischemic heart disease, cerebrovascular disease, peripheral vascular dis-

ease, and associated revascularization procedures.

All biochemical tests were performed in the ISO 15189 accredited

laboratory at Center Hospital Lillebaelt, Region of Southern Denmark.

We used the stored blood samples to measure antibodies against

human glutamate decarboxylase 65‐kDa isoform, using the

AESKULISA GAD65 kit (AESKU Diagnostics, Wendelsheim, Ger-

many).11 The kit has a sensitivity of 92% and a specificity of 98%,

and a predictive value of a positive test of 85% in our population.

Fasting C‐peptide was analysed using the Roche C‐Peptide assay

(Roche Diagnostics, Mannheim, Germany).12 Fasting plasma glucose

(FPG) was analysed using an enzymatic hexokinase method (Gluco‐

quant Glucose/HK, Roche Diagnostics, Mannheim, Germany).
2.2 | Phenotypes of type 2 diabetes

We first identified patients with “other specific forms” of diabetes in

the classification of diabetes mellitus described in the 2003 Report

of the Expert Committee on the Diagnosis and Classification of Diabe-

tes Mellitus.4 The other forms included specific known causes of insu-

lin resistance and/or beta cell failure leading to hyperglycemia, eg, rare

subtypes of diabetes,13 latent autoimmune diabetes of adults

(LADA),14 secondary diabetes (associated with pancreatic disease15),

and glucocorticoid‐associated diabetes.16 Using data from the DNRP,

the Danish National Health Service Prescription Registry, and the

GAD antibody titers, we categorized these “other specific forms” as

follows: (1) rare subtypes of diabetes (see supplemental material); (2)

LADA, ie, GADAtiter ≥20 IE/mL (international WHO units) and

age > 30 years; (3) secondary diabetes, ie, with a history of pancreatitis



FIGURE 1 Study flowchart
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or pancreas resection; and (4) glucocorticoid‐associated diabetes, ie,

patients who redeemed prescriptions for oral glucocorticoids within

3 months prior to inclusion in the cohort.
2.3 | Subphenotypes of WHO‐defined type 2
diabetes

The remaining 5445 patients were categorized as meeting WHO‐

defined criteria for “true” type 2 diabetes. We further subphenotyped

these patients according to their beta cell function and IS (4285

patients with data available [see Figure 1]), into those with

insulinopenic type 2 diabetes (high IS and low beta cell function), clas-

sical type 2 diabetes (low IS and low beta cell function), or

hyperinsulinemic type 2 diabetes (low IS and high beta cell function).

We used version 2 of the revised homeostatic assessment model

(HOMA2) to estimate IS (HOMA2S) and beta cell function (HOMA2B)

based on fasting C‐peptide and plasma glucose values.17 High and low

values for IS and beta cell function were defined as being above or

below the median values for HOMA2S and HOMA2Beta in a non‐dia-

betic background population sample selected from all residents

(360 921) of 1 Danish county, as previously described.18 In brief,

health registries were used to identify all persons aged 25 to 75 years

in the county as of 31 December 2006, and those with diabetes were

ascertained using a regional algorithm. Non‐diabetic individuals were

age‐matched and gender‐matched to the diabetic population. A ran-

dom sample of non‐diabetic subjects was then invited to contribute

samples to a biobank. FPG was measured in 4980 subjects, from

whom 120 persons within each age‐decile (35‐75 years of age) were

randomly sampled. All 98 persons aged 25 to 35 years were included,

yielding a total sample of 578 persons for whom C‐peptide was mea-

sured. Among these 578 persons, 483 had normal glucose tolerance

(defined as FPG ≤ 6.1 mmol/L). The sample of 483 persons was then
used to calculate median HOMA values. The median BMI was 26 kg/

m2 in the background population sample, equal to the median BMI

among Danish residents.19
2.4 | Statistical analyses

We calculated the prevalence with corresponding 95% confidence

intervals (CIs), of the insulinopenic, classical, and hyperinsulinemic

phenotypes in our type 2 diabetes population.

The robustness of our subphenotyping independent of the

patients' current pharmacological treatment was evaluated by sepa-

rately examining the subphenotype distribution in the subcohort of

patients who were naive to glucose‐lowering drugs.

Within each subphenotype, median and quartiles were calculated

for age and waist circumference, and the medians of the

hyperinsulinemic and insulinopenic subphenotypes were compared

with those of the classical subphenotype using the 2‐sided Wilcoxon

test. A level of P < 0.05 was considered statistically significant. Preva-

lence of CVD at inclusion in the DD2 cohort was calculated within

each subphenotype, and the hyperinsulinemic and insulinopenic

subphenotypes were compared with the classical subphenotype using

prevalence ratios (PRs). For each patient, HOMA2B (y‐axis) was plot-

ted against HOMA2S (x‐axis) to show the relation of beta cell function

and IS among type 2 diabetes patients and among the non‐diabetic

background population. All analyses were performed using SAS

version 9.4.

The study was approved by the Regional Ethical Committee on

Health Research (record number S‐20100082) and the Danish Data

Protection Agency (record number 2008‐58‐0035). All patients

received oral and written information before signing an informed

consent.



FIGURE 2 Plot of insulin sensitivity and beta cell function of
patients meeting criteria for WHO‐defined type 2 diabetes.
Reference lines represent the median values of HOMA2 insulin
sensitivity and HOMA2 beta cell function in the background
population
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3 | RESULTS

Among 5813 patients with newly diagnosed type 2 diabetes eligible

for further phenotyping, 58.1% ([95% CI 56.9, 59.4], n = 3379) were

men, and the median age was 62 years (interquartile range [IQR] 53‐

69 years). The median waist circumference was 106 cm (IQR 97‐

116 cm), and the median FPG level was 7.13 mmol/L (IQR 6.37‐

8.25 mmol/L). We found that 0.4% (n = 21) of the patients had rare

subtypes of diabetes, 2.8% (n = 164) had LADA, 0.7% (n = 43) had sec-

ondary diabetes, and 2.4% (n = 140) had glucocorticoid‐associated dia-

betes (Table 1). The remaining 93.7% ([95% CI 93.0, 94.3], n = 5445)

of the patients who had been diagnosed with type 2 diabetes fulfilled

the WHO criteria for type 2 diabetes.

For patients with WHO‐defined type 2 diabetes, the results of our

HOMA2 analysis based on FPG and fasting plasma C‐peptide are

shown in Figure 2. The figure presents the hyperbolic relation

between the variables, HOMA2B (beta cell function) and HOMA2S

(IS).20 For comparative purposes, Figure 3A presents the hyperbolic

relation for the general population with normal glucose tolerance

(FPG ≤6.1 mmol/L). As expected, values for patients meeting criteria

for WHO‐defined type 2 diabetes are located to the left and below

the curve for the general population. Thus, for every value of IS, beta

cell function in type 2 diabetes patients was lower than in the back-

ground population. There is some overlap (Figures 2 and 3A), however,

indicating that some type 2 diabetes patients had FPG values below

6.1 mmol/L at enrollment in the DD2 study.

In Figure 2, median values for IS and beta cell function calculated

from the background population separate the type 2 diabetes patients

into 3 distinctly classified subphenotypes. One group (lower right) is

characterized by normal to high IS but severely reduced beta cell func-

tion (insulinopenic type 2 diabetes). A second group is characterized by

both insulin resistance and reduced beta cell function (classical type 2

diabetes). The third group is characterized by severe insulin resistance,

but normal to high beta cell function (hyperinsulinemic type 2 diabetes).

Figure 3B plots type 2 diabetes patients according to their FPG values.

This shows that patients with classical type 2 diabetes had the highest

FPG levels, while patients with insulinopenic and hyperinsulinemic

type 2 diabetes had lower FPG values.

In our study cohort, classical type 2 diabetes was the most com-

mon (63.1%) of the 3 pathophysiologically determined subphenotypes

of WHO‐defined type 2 diabetes, while hyperinsulinemic type 2
TABLE 1 Prevalence of pathophysiological phenotypes in 5,813 patients

Pathophysiological Phenotypes

Patients with “other specific forms” of diabetes

Rare subtypes

LADA

Secondary diabetes

Glucocorticoid‐associated diabetes

Patients with WHO‐defined type 2 diabetes

Insulinopenic type 2 diabetes

Classical type 2 diabetes

Hyperinsulinemic type 2 diabetes
diabetes (27.2%) and insulinopenic type 2 diabetes (9.7%) were less

prevalent (Table 1). Compared with patients with classical type 2 dia-

betes, patients with insulinopenic type 2 diabetes were older (63.8

vs 61.9 years, P = 0.01), had a much smaller waist circumference

(median 92.0 vs 105.0 cm, P < 0.0001), and tended to have a lower

prevalence of previously diagnosed CVD (17.5% vs 20.5%, PR 0.85

[95% CI 0.68, 1.07]; Table 2). In contrast, patients with

hyperinsulinemic type 2 diabetes had more pronounced central obe-

sity (median 112.0 vs 105.0 cm, p < 0.0001) and substantially more

CVD (26.5% vs 20.5%, PR 1.29 [95% CI 1.15, 1.46]) compared to

patients with classical type 2 diabetes. Median Hba1c levels at enroll-

ment were also significantly different among patients with

hyperinsulinemic (6.33%) and insulinopenic type 2 diabetes (6.52%)

compared to patients with classical type 2 diabetes (6.62%), although

the absolute differences were modest. A family history of type 2 dia-

betes was found in 47.5% of hyperinsulinemic, 53.3% of insulinopenic,

and 55.3% of classical type 2 diabetes patients.

Most type 2 diabetes patients included in our cohort had started

glucose‐lowering treatment before study enrollment and insulin treat-

ment was more prevalent in insulinopenic type 2 diabetes patients
with new clinically diagnosed type 2 diabetes in Denmark, 2010‐2015

Number of Patients, % (95% CI)

21, 0.4 (0.2, 0.5)

164, 2.8 (2.4, 3.2)

43, 0.7 (0.5, 1.0)

140, 2.4 (2.0, 2.8)

5,445, 93.8 (93.2, 94.5)

411, 9.6 (8.7, 10.5)

2,713, 63.3 (61.9, 64.8)

1,161, 27.1 (25.8, 28.4)



FIGURE 3 A, Plot of insulin sensitivity and beta cell function in the
background population. B, Fasting plasma glucose intervals in the
type 2 diabetes subphenotype groups. Blue: FPG < 6.1, Orange:
6.1 ≤ FPG < 7.0, brown: 7.0 ≤ FPG < 8.0, cream: 8.0 ≤ FPG < 9.0,
green: 9.0 ≤ FPG < 10.0, black: 10.0 ≤ FPG. C, Plot of the background
population with normoglycemia (FPG < 6.1). Three hypothetical
patients with FPG = 8.5 mmol/L representing each of the 3
phenotypes are shown. Successful treatment of type 2 diabetes
patients will bring a patient back into the area of normoglycemia. The
path to normoglycemia through improved insulin sensitivity or beta
cell function is shown for each of the patients. The shortest path to
normoglycemia for the insulinopenic patient is to improve insulin
secretion (or insulin treatment). For the hyperinsulinemic patient, the
easiest way is to improve insulin action, whereas the classical T2D
patient will benefit from improvement of both insulin action and
secretion
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(Table 3). However, we found a very similar subphenotype distribution

among the 668 drug‐naive patients, ie, 9.9% had insulinopenic, 62.0%

had classical, and 28.1% had hyperinsulinemic type 2 diabetes. In

drug‐naïve patients, the median HbA1c was marginally lower than in

the whole population (6.30 [IQR 5.95, 6.71] vs 6.52 [IQR 6.14,

7.09]). However, the absolute values and intergroup differences in

anthropometrics and CVD in the 3 different pathophysiological groups

did not change materially when the analysis was restricted to drug‐

naive patients (Table 4).
4 | DISCUSSION

In this large study of patients newly diagnosed with type 2 diabetes by

Danish GPs and hospital outpatient clinics, we identified several dis-

tinct pathophysiological phenotypes. Approximately 6% of the

patients were clinically misclassified as type 2 diabetes patients, when

they instead had secondary diabetes, glucocorticoid‐associated diabe-

tes, LADA, or rare subtypes of diabetes. Patients who met WHO‐

defined criteria for type 2 diabetes mostly had classical type 2 diabe-

tes, but 1 subgroup of insulinopenic type 2 diabetes patients had

completely normal IS, while another subgroup of hyperinsulinemic

type 2 diabetes patients had normal to high beta cell function. In con-

trast to the 2 other subphenotypes, insulinopenic type 2 diabetes

patients had a nearly normal waist circumference and (consistent with

their high IS) a lower prevalence of CVD. In contrast, hyperinsulinemic

type 2 diabetes patients had more abdominal obesity and a higher

prevalence of CVD. These findings support the hypothesis that

hyperinsulinemia is atherogenic.21 The prevalence of CVD was not

associated with HbA1c at enrollment, as the hyperinsulinemic T2D

patients had the lowest HbA1c. Even though insulinopenic type 2 dia-

betes patients had lower prevalence of CVD, it still remained higher

than in the background population. National figures for the prevalence

of myocardial infarction in 2015 was 2.5%, with an age and gender

distribution approximated to our cohort.22 As the prevalence was

4.1% in insulinopenic type 2 diabetes patients, management of cardio-

vascular risk factors must still be considered important in this

subphenotype.

Our study is novel as it, to our knowledge, is the first to propose a

pathophysiologically based subphenotyping in the general type 2 dia-

betes population. The inherent heterogeneity of insulin resistance and

beta cell function implied by the hyperbolic relationship in healthy

subjects is not new.20 The existence of lean and obese healthy sub-

jects with similar insulin resistance is also known.23 Nevertheless, in

type 2 diabetes, such characterizations are scarce and have only

focused on mean values—not the heterogeneity.24-26 Some studies

have investigated the utility of C‐peptide level in order to identify

selected patients with an absolute need for insulin.27-32 These studies

did not relate beta cell function to insulin resistance. Furthermore C‐

peptide measurements were not standardized which reduces the gen-

eralizability. This will also be true for HOMA2 unless an appropriate

standardization against a healthy reference group is made, as done in

our study.

A related paper from our department has characterized a clinic‐

based diabetes population, including type 1 diabetes, according to



TABLE 2 Clinical characteristics of the 3 subphenotypes among patients meeting WHO‐defined criteria for type 2 diabetes

Insulinopenic Type 2 Diabetes
(N = 411)

Classical Type 2 Diabetes
(N = 2713)

Hyperinsulinemic Type 2 Diabetes
(N = 1161)

Age (years, IQR) 63.8 (55.3, 69.8)* 61.9 (53.3, 68.6) 62.9 (53.8, 70.3)*

Men N, % (95% CI) 239, 58.2 (53.4, 62.9) 1625, 59.9 (58.1, 61.7) 639, 55.0 (52.2, 57.9)a

Waist (cm, IQR) 92.0 (85, 100)*** 105.0 (97, 115) 112.0 (102, 121)***

BMI (kg/cm2, IQR) 25.6 (23.2, 28.7)*** 30.1 (27.1, 34.0) 33.0 (29.3, 37.0)***

HbA1c (%, IQR) 6.52 (6.05, 7.00)*** 6.62 (6.20, 7.20) 6.33 (6.05, 6.71)***

FPG (mmol/L, IQR) 6.51 (5.88, 7.38)*** 7.63 (6.88, 8.75) 6.42 (5.88, 6.94)***

Previous cardiovascular disease (any) N, % (95% CI) 72, 17.5 (13.8, 21.2)b 556, 20.5 (19.0, 22.0) 308, 26.5 (24.0, 29.1)c

Previous myocardial infarction N, % (95% CI) 17, 4.1 (2.2, 6.1) 120, 4.4 (3.6, 5.2) 75, 6.5 (5.0, 7.9)d

Previous heart failure N, % (95% CI) 7, 1.7 (0.5, 3.0)e 90, 3.3 (2.6, 4.0) 71, 6.1 (4.7, 7.5)f

Previous cerebrovascular disease N, % (95% CI) 17, 4.1 (2.2, 6.1)g 175, 6.5 (5.5, 7.4) 78, 6.7 (5.3, 8.2)

All comparisons use classical type 2 diabetes as the reference group. Hba1c was available in 3543 and BMI in 2748 of 4285 patients.
a) PR 0.92 (95% CI 0.87, 0.98).
b) PR 0.85 (95% CI 0.68, 1.07).
c) PR 1.29 (95% CI 1.15, 1.46).
d) PR 1.46 (95% CI 1.10, 1.93).
e) PR 0.51 (95% CI 0.24, 1.10).
f) PR 1.84 (95% CI 1.36, 2.50).
g) PR 0.64 (95% CI 0.39, 1.04).

*P < 0.05.

***P < 0.0001.
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C‐peptide levels, age, and GADA. HbA1c was higher and

other cardiovascular risk factors were decreased in patients with

low C‐peptide, regardless of age and GADA. These results are in line

with the present study, although the proportion of patients with low

C‐peptide, which were characterized as clinically having type 2

diabetes, was not known.33

A second novel finding is the differences in cardiovascular mor-

bidity between subphenotypes. Only few studies have investigated

the association between measures of insulin resistance or beta cell

function and CVD in type 2 diabetes. Some studies did not find an

association between C‐peptide and CVD,34-36 while others did.36 Insu-

lin resistance, measured as HOMA‐IR is associated with CVD, beyond

known risk factors in persons without diabetes.37-41 This association

has not been tested in unselected patients with type 2 diabetes,

although insulin resistance is known to usually precede manifest dia-

betes by several years.42 The aim of the current cross‐sectional inves-

tigation was not to examine whether insulin resistance causes CVD

but first and foremost to establish a classification with pathophysio-

logical and clinical relevance. Still, our data point to a role of insulin

resistance in CVD. Obesity is also known to be associated with
TABLE 3 Prevalence of glucose‐lowering treatment in the cohort

Insulinopenic Type 2 D
(N = 411)

Any antidiabetic treatment N, % (95% CI) 345, 83.9 (80.0, 87.4)

Oral glucose‐lowering treatment only N, % (95% CI) 287, 69.8 (65.1, 74.2)a

Insulin treatment N, % (95% CI) 58, 14.1 (10.9, 17.9)b

All comparisons use classical type 2 diabetes as the reference group.
a) PR 0.87 (95% CI 0.82, 0.93).
b) PR 2.88 (95% CI 2.15, 3.85).
c) PR 0.72 (95% CI 0.51, 1.02).
CVD43 and is possible a main mediator of the higher cardiovascular

occurrence in hyperinsulinemic patients, although the association with

obesity is complex in patients with type 2 diabetes.44,45 As the cause‐

and‐effect directions in the pathophysiological pathways of obesity

and IR are impossible to disentangle in a cross‐sectional design, we

cannot make inference if primary IR caused atherosclerosis in a time

sequence, although evidence is present for a role of insulin resistance

in CVD.41 On the other hand, intraabdominal fat deposition only

explains 52% of the variation in insulin resistance,23 which in itself is

an argument for measuring insulin resistance and not estimating it

from obesity related measures, when pathophysiological treatment

suggestions are made.

Misclassification of “other specific forms” of diabetes as type 2

diabetes has potential implications for treatment and subsequent out-

comes, if affected patients are treated according to general type 2

diabetes treatment algorithms rather than receiving treatment based

on specific causes of hyperglycemia.5 Other studies have found a

higher prevalence of LADA in different European T2D populations

than our 2.8%, with rates ranging from 2.8 to 9.3%.46-53 The main rea-

son for the discrepancy is likely that our cohort enrols unselected
iabetes Classical Type 2 Diabetes
(N = 2713)

Hyperinsulinemic Type 2 Diabetes
(N = 1161)

2299, 84.7 (83.3, 86.1) 973, 83.8 (81.6, 85.9)

2166, 79.8 (78.3, 81.3) 932, 80.3 (77.9, 82.5)

133, 4.9 (4.1, 5.8) 41, 3.5 (2.5, 4.8)c



TABLE 4 Clinical characteristics of the 3 subphenotypes among drug‐naive patients meeting WHO‐defined criteria for type 2 diabetes

Insulinopenic Type 2 Diabetes
(N = 66)

Classical Type 2 Diabetes
(N = 414)

Hyperinsulinemic Type 2 Diabetes
(N = 188)

Age (years, IQR) 65.3 (57.9, 69.2) 65.0 (57.8, 71.2) 65.5 (56.3, 71.6)

Men N, % (95% CI) 35, 53.0 (41.0,65.1) 235, 56.8 (52.0, 61.5) 97, 51.6 (44.4, 58.8)a

Waist (cm, IQR) 90 (84, 99)*** 102 (95, 112) 110 (101, 120)***

BMI (kg/cm2, IQR) 24.7 (23.1, 28.1)*** 29.0 (26.5, 32.6) 33.1 (29.1, 37.0)***

HbA1c (%, IQR) 6.17 (5.86, 6.61) 6.30 (5.95, 6.71) 6.30 (5.90, 6.60)

FPG (mmol/L, IQR) 6.09 (5.74, 6.81)*** 7.18 (6.64, 7.97) 6.49 (5.87, 7.06)***

Previous cardiovascular disease (any) N, % (95% CI) 8, 12.1 (4.2, 20.0)b 80, 19.3 (15.5, 23.1) 47, 25.0 (18.8,31.2)c

Previous myocardial infarction N, % (95% CI) 1, 1.5 (0, 4.5)d 18, 4.3 (2.4, 6.3) 11, 5.9 (2.5, 9.2)e

Previous heart failure N, % (95% CI) 0, 0 (0, 0) 11, 2.7 (1.1, 4.2) 10, 5.3 (2.1, 8.5)f

Previous cerebrovascular disease N, % (95% CI) 1, 1.5 (0, 4.5)g 19, 4.6 (2.6, 6.6) 19, 10.1 (5.8, 14.4)h

All comparisons use classical type 2 diabetes as the reference group. Hba1c was available in 527 and BMI in 393 of 668 patients.
a) PR 0.83 (95% CI 0.69, 1.00).
b) PR 0.63 (95% CI 0.32, 1.24).
c) PR 1.29 (95% CI 0.94, 1.78).
d) PR 0.35 (95% CI 0.05, 2.57).
e) PR 1.35 (95% CI 0.65, 2.79).
f) PR 2.00 (95% CI 0.87, 4.63).
g) PR 0.33 (95% CI 0.04, 2.43).
h) PR 2.20 (95% CI 1.19, 4.06).

***p < 0.0001.
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newly diagnosed patients. Many studies were performed in a few

selected clinics and/or among younger patient populations with

greater disease severity, where the prevalence of LADA is likely to

be higher. In community dwelling newly diagnosed type 2 diabetes

patients resembling ours, the prevalence of LADA has been found to

be comparable.46,52-54 Furthermore, GADA testing is not standardized

across the referenced studies, making direct comparison between

studies difficult. Other diabetes‐related auto‐antibodies could also

define LADA but may only increase its prevalence marginally and at

the same time increase the expense greatly.48-50 There is evidence

that LADA patients may obtain best outcomes with initial insulin treat-

ment, while sulfonylurea therapy is not recommended.55 As patients

with secondary diabetes have low insulin and glucagon secretion and

are at high risk of hypoglycemia, insulin and incretin‐based drugs

may be their best treatment option.15 Patients with glucocorticoid‐

associated diabetes often experience post‐prandial hyperglycemia

and may be treated with prandial insulin only, although GLP1 receptor

agonists also seem to be effective.16 We acknowledge that we in the

present study cannot prove that glucocorticoids were the direct cause

of the diabetes, but only that they were associated. Steroid treatment

is transient in many patients and formal phenotyping should be per-

formed in case the diabetes persists after discontinuation. Patients

with rare diseases that cause hyperglycemia should be treated individ-

ually, taking their specific underlying disease into consideration. Thus,

general treatment guidelines are not applicable to patients with path-

ophysiological diabetes phenotypes outside the traditional WHO type

2 diabetes definition.

Our findings are in line with a recent study showing that a propor-

tion of prediabetic subjects develop type 2 diabetes despite having

normal IS, due to a primary beta cell defect.56 These patients, desig-

nated as having insulinopenic type 2 diabetes, were not misclassified
as type 1 diabetes or LADA patients in our study, as we excluded

patients with autoimmune disease (GADA‐positive patients) before

we undertook extended phenotyping. Therefore, it seems likely that

hyperglycemia develops in these patients only due to beta cell defi-

ciency. The exact cause of the beta cell deficiency is not known. A

high proportion of GADA‐positive patients, ranging from 19 to 69%,

have been shown to lose their anti‐bodies over time,57-60 which could

be a hypothetic explanation for GADA‐negative insulinopenia. The

majority of patients have been shown to lose their GADA positive sta-

tus within 6 months.59

Our findings clearly indicate that type 2 diabetes is a heteroge-

neous disease with respect to pathophysiology, body composition,

and cardiovascular complications. To properly classify newly diag-

nosed type 2 diabetes patients, we recommend measuring their

fasting c‐peptide, p‐glucose, and GADA levels. Calculation of HOMA2

may be helpful in daily clinical practice because it is inexpensive, easy

to perform, and correlates reasonably well with hyperinsulinemic

clamp data.61,62 HOMA2S is a measure of IS in both peripheral and

liver tissue,62 and our HOMA2S‐based analysis showing that 10% of

newly diagnosed type 2 diabetes patients had normal to increased IS

appears to challenge much of the literature on type 2 diabetes patho-

physiology.63 This could be due to the imprecision of the HOMA2

technique. However, the individual values obtained during

hyperinsulinemic euglycemic clamp studies in type 2 diabetes patients

also show that some patients have normal values for insulin‐mediated

glucose disposal, indicating normal IS.64 This is often overlooked in the

literature. Moreover, a severe beta cell defect is a rather common find-

ing in newly diagnosed type 2 diabetes patients, based on more

sophisticated techniques than HOMA2.65

Our study population consisted of patients treated at GPs or hos-

pital outpatient clinics throughout Denmark and can be considered
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fairly representative of the Danish type 2 diabetes population in ear-

lier phases of the disease. In previous work, we found that baseline

characteristics of the DD2 cohort were similar to baseline characteris-

tics among all T2D patients in the Northern Region of Denmark at ini-

tiation of their first glucose‐lowering therapy.66

Close to 80% of our study population had already started glucose‐

lowering drugs at enrollment, with 6% receiving insulin. Glucose‐low-

ering drugs may affect both fasting c‐peptide and FPG values, but not

greatly,62 as indicated by our findings of fairly identical HOMA2‐based

phenotype groups independent of ongoing treatment (Table 4). Drug‐

naïve patients in our cohort are a selected group, as illustrated by the

slightly lower HbA1c and enrollment closer to diagnosis in this sub-

group, but the robustness of the phenotype distribution and charac-

teristics does not lead us to believe that pre‐drug characterization of

all patients will change the conclusions in the present work. Although

our proposed phenotyping appears robust in a clinical setting, values

for IS and beta cell function represent a continuum where there is

overlap between the different groups. Therefore, final phenotyping

always includes clinical judgement.

In this study, we classified our patients into characteristic patho-

physiological phenotypes based on in vivo measurements. We know

that formal genotyping would have given us a better basis for pheno-

typing67 by permitting identification of the monogenetic forms of dia-

betes. The prevalence of monogenetic diabetes is only 1% to 2%, and

a proportion of these will have impaired beta cell function.68 A few

insulinopenic type 2 diabetes patients will therefore have monogenic

forms of diabetes. As genetic tests become readily available and inex-

pensive, genetic testing of patients with a family history of diabetes

should therefore be implemented in the clinic.

Poor glycemic control has been linked to low levels of C‐pep-

tide.33,69-71 In our study, we found that HbA1c and FPG were highest

in patients with classical type 2 diabetes. When insulin resistance co‐

exists with impaired beta cell function, a greater impact will be seen on

glucose levels (Figure 3B). This emphasizes the importance of measur-

ing IS and beta cell function in conjunction.

Treatment should ideally target the pathophysiological defect, and

identification of subphenotypes enables the clinician to choose the

most relevant treatment. The insulin secretion and sensitivity are part

of a dependent continuum, but the extremes will differ greatly. Cate-

gorization of a continuum will always pose problems, especially

around the dividing lines. Our categorization defines 2 phenotypes

where the relative effect of improving beta cell function or IS, respec-

tively, is limited. Specific glucose‐lowering treatment (not insulin)

might differ in their effect on the pathophysiological defect in differ-

ent areas of the continuum adding further complexity to which cut‐

offs to choose. Insulinopenic type 2 diabetes patients may benefit

from increased insulin values (eg, insulin treatment) as shown in

Figure 3C, while a reduction in insulin resistance would have less

effect or even potentially adverse effects, eg, ketoacidosis during

SGLT‐2 inhibitor treatment. The asymptotic nature of the hyperbolic

function in the insulinopenic area (Figure 3C) infers that further

improvements in IS will not bring the hyperglycemic patient to the

normoglycemic area, whereas a small improvement in beta cell func-

tion will do so. In accordance with this, low beta cell function has been

linked to decreased effect of several glucose‐lowering treatments.72-76
We also saw a higher proportion of insulinopenic patients who were

treated with insulin (caregivers were not aware of the classification).

Classical type 2 diabetes patients can be treated in accordance with

present guidelines,5 ie, improvement of both insulin action and insulin

secretion. The hyperbolic function (of normoglycemia) in this area has

a tangent vector with a slope close to 45° inferring that the shortest

route to normoglycemia will be equal and concomitant improvements

in IS and beta cell function. Because hyperinsulinemic type 2 diabetes

patients are severely insulin resistant and obese, treatment that

improves insulin action seems most logical (Figure 3C), eg, bariatric

surgery or GLP1 agonists.77

A very recent study has, by statistical cluster analysis, found that

type 2 diabetes can be subdivided into 5 phenotypes with specific

characteristics.78 These findings support our conclusion.

In conclusion, we found that patients diagnosed with type 2 dia-

betes in a community clinical setting were a heterogeneous group. In

the future, a move away from the current “one size fits all” approach

to more individualized treatment that is based on pathophysiological

characteristics including FPG, serum C‐peptide, and GADA may lead

to improved outcomes for type 2 diabetes patients.
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